Understanding molecular mechanisms of ageing

Understanding molecular mechanisms of ageing

© EMBL

Researchers at EMBL’s European Bioinformatics Institute (EMBL-EBI), the Babraham Institute and collaborators have used the epigenetic clock to explore the molecular mechanisms that may drive ageing in humans. They found one gene, called NSD1, that seems to be closely linked to the process. This type of research could advance our understanding of ageing.

There are different ways of measuring an organism’s age. Chronological age is a measure of how long an organism has been alive, while biological age is a measure of how well the organism is functioning on a molecular level. One useful tool for measuring biological age is the epigenetic clock, proposed first by Trey Ideker, and independently by Steve Horvath in 2013.

The researchers examined different datasets – many of them publicly available – of people with developmental disorders, to see whether there were any associations between specific genes and an acceleration of biological age. They found that individuals with a mutation in gene NSD1 had an accelerated biological age according to the epigenetic clock, meaning they were ageing faster at a molecular level.

“The epigenetic clock is the most accurate tool available to measure the ageing process in humans,” explains Daniel Elías Martín-Herranz, who recently completed his PhD at EMBL-EBI. “We wanted to ‘peer inside’ and better understand how it works. Specifically, we wanted to see if we could identify specific genes or proteins from the epigenetic machinery that accelerate or slow down the ageing process. The fact that we found one gene that, when mutated, results in a significant acceleration of biological age is very encouraging. It shows that the epigenetic clock is a promising tool for understanding ageing and that we may unravel the molecular mechanisms that control its ticking rate.

About EMBL

EMBL is Europe’s flagship laboratory for the life sciences. Established in 1974 as an intergovernmental organisation, EMBL is supported by over 20 member states. EMBL performs fundamental research in molecular biology, studying the story of life. The institute offers services to the scientific community; trains the next generation of scientists and strives to integrate the life sciences across Europe. EMBL is international, innovative and interdisciplinary. Its more than 1700 staff, from over 80 countries, operate across six sites in Barcelona (Spain), Grenoble (France), Hamburg (Germany), Heidelberg (Germany), Hinxton (UK) and Rome (Italy). EMBL scientists work in independent groups and conduct research and offer services in all areas of molecular biology. EMBL research drives the development of new technology and methods in the life sciences. The institute works to transfer this knowledge for the benefit of society.

Get latest news from ATTRACT