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ABSTRACT

Propagation Phase Contrast Synchrotron Microtomography is becoming a golden standard for a non-invasive and non-destructive
access to internal structures of archaeological remains. However, the manual segmentation of complex biological samples can require
weeks of work, even for small volumes. Machine learning techniques can automate this process. We describe the ASEMI segmenter, a
tool for automatic segmentation of arbitrarily large volumes, and compare with commercially available software. Results are promising,
and demonstrate the feasibility of these techniques. Further work would scale this tool to facilitate the segmentation of collections of
scans, and to integrate within existing workflows.
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1. INTRODUCTION

Archaeologists have always been interested in applying
new technologies to their research to better understand
our past. Propagation Phase Contrast Synchrotron Mi-
crotomography is becoming a golden standard for a non-
invasive and non-destructive access to internal structures
of archaeological remains. This technique has been re-
cently applied to archaeozoological studies of mummified
animal remains from the Ptolemaic and Roman peri-
ods of ancient Egypt (around 3rd century BC to 4th

century AD). Researchers performed virtual autopsies
and virtual unwrapping, uncovering information about
animal life and death in past civilisations, as well as
revealing the processes used to make these mummies
[1], [2]. However, this can be a long process. After
microtomographic data processing and reconstruction,
the virtual specimen has to be segmented to separate
the different parts or different materials of the sample.
For biological samples, segmentation is usually done
semi-manually, and can require weeks of human effort,
even for small volumes. Effective automatic segmentation
based on Artificial Intelligence (AI) could drastically
reduce this effort, while computation time ranges from
hours to days, depending on the size and complexity of
the volumetric image. This is particularly relevant as the
number and sizes of volumes increases. For example,
the European Synchrotron Radiation Facility (ESRF) is
currently generating huge amounts of data of human
organs (up to 2 TiB for a single scan); only AI approaches
can handle segmentation at this scale.

We developed a fully automatic segmenter based on
classical machine learning, requiring the user to man-

ually segment only a small sample of the volume. Our
approach has a number of advantages over commercial
solutions. Specifically, our segmenter is not limited by
the computer’s main memory, allowing it to segment
arbitrarily large volumes. Its parameters are automati-
cally tuned for the given volume, minimising user input.
It also works directly with three dimensional features,
rather than reducing the problem to an independent
segmentation of two-dimensional slices, without increas-
ing computational complexity from quadratic to cubic.
This allows our system to scale well, particularly for
larger volumes. Finally, our system can use interpretable
machine learning models, making it possible to inspect
the reasons behind segmentation errors.

Our output segmentations have an overall accuracy
of 94–98% when compared with manually segmented
slices. This approaches the results of off-the-shelf com-
mercial software using deep learning (97–99%) at much
lower complexity. A qualitative analysis of the outputs
shows that our results are close in term of usability
to those from deep learning. Some postprocessing is
necessary to clean up segmentation boundaries, for both
our system and the deep learning approach. Preliminary
work using a Markov Random Field gave promising
results, and we plan to implement this in a scalable way.

2. STATE OF THE ART

The state of the art in segmentation is the use of deep
learning models such as U-Net [3], designed to work
on 2D images. Unfortunately, a direct extension of U-
Net to three dimensions dramatically increases memory
and computational complexity. As a result, the technique
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of 3D U-Net does not scale well, and its use has been
limited to relatively small volumes, such as those from
medical scanners [4], [5]. An alternative approach is to
independently segment every slice in a given volume.
Although this makes the process more practical, it also
results in ridged artifacts where the labelling from one
slice to the next is inconsistent.

Since this project started, deep learning segmentation
algorithms are available in Dragonfly [6], a commercial
software for volumetric image editing and analysis. To
avoid the scalability problem, Dragonfly independently
segments every slice in the volume; the latest version,
recently released, also introduces the ability to use adja-
cent slices as context. ASEMI then appears as a timely
work in a very rapidly developing field.

Dragonfly already gives usable results in a range of
situations when the training slices are selected to be
representative of a single complex specimen, but its
algorithms come with a number of caveats. In particular,
Dragonfly is limited to volumes that fit in main memory,
and recommends having 4× as much RAM as the
largest volume size. It also appears that for specimens
as complex as our mummies, a trained model can hardly
be applied to a different specimen, even if it was scanned
in the same conditions. To obtain a more general model
would require much more human time for the manual
segmentation of relevant slices from several samples, as
well as much longer training time for the machine.

3. BREAKTHROUGH CHARACTER OF THE
PROJECT

Our system resolves the fundamental scalability problem
using traditional machine learning techniques, while still
approaching the results obtainable with deep learning
when this is applied independently on every slice of the
volumetric image. Normally, the computation of a voxel’s
features scales cubically with the size of the neighbour-
hood considered. However, we can take advantage of
the fact that the neighbourhoods of adjacent voxels have
significant overlap, and can express the computation of a
voxel’s features as a change from that of its neighbours.
This reduces the complexity of the feature computation
to one that scales quadratically with neighbourhood size,
for a whole class of features. This allows us to work
with three dimensional information without sacrificing
performance. Since the segmentation uses adjacent slices
as context, the segmentation is continuous across slices
and ridged artifacts are reduced.

Furthermore, our implementation is designed specifically
for very large volumes, dividing a given volume into
blocks and working on these independently. This means
it is not limited by the main memory or GPU memory

available, and also facilitates parallel processing on mul-
tiple compute nodes.

Where necessary, we can also use white box classifiers,
allowing us to interpret what the classifier has learned
and to investigate the source of segmentation errors.

4. PROJECT RESULTS

A comparison of the per-label and overall accuracy
between the U-Net implementation in Dragonfly (oper-
ating independently on each 2D slice) and the ASEMI
segmenter with random forest (RF) and neural network
(NN) classifiers is shown in Table 1. These results are
computed against a ground truth consisting of a selection
of manually segmented slices that were not used in the
tuning or training processes. It can be seen that in general
U-Net outperforms the ASEMI segmenter, and that the
NN classifier often outperforms the RF classifier.

A visual inspection of the ASEMI segmenter output
shows that this is still useful and that a lot of the
errors are due to indecision near object boundaries.
This exhibits as boundary fuzziness and small islands of
mislabelled regions, as shown in Fig. 1. Preliminary work
using a Markov Random Field to clean up the decision
boundaries gave promising results. An alternative is the
use of morphological operations. In this example there is
also evidence of mislabelling in the manual segmentation
which is corrected by ASEMI but not by Dragonfly.
Observe how, in the manual segmentation, a region of
dense textile was not marked and the bone cross-section
was only partially marked; U-Net faithfully replicates
these errors, while ASEMI correctly extends the dense
textile region and fully labels the bone cross-section.

A 3D rendering of a segmented ibis mummy is shown in
Fig. 2, comparing the U-Net implementation in Drag-
onfly with the initial ASEMI implementation and the
tuned ASEMI segmenter with RF and NN classifiers.
One can observe how the ASEMI output is comparable
to the Dragonfly output, particularly when using the NN
classifier. While Dragonfly seems to perform better in
some regions (e.g. the tail section), ASEMI is somewhat
better in others (e.g. the wing bones).

5. FUTURE PROJECT VISION

5.1. Technology Scaling

While we have demonstrated the feasibility of using
machine learning for the 3D segmentation of large vol-
umes, a number of further advances are necessary for an
operational environment:

1) Apply our complexity reduction technique to estab-
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(a) Manual (b) ASEMI (c) Dragonfly

Fig. 1. Segmentation detail from MG.2038 (ibis in a jar) mummy, showing fuzziness at the label boundaries for the ASEMI segmenter
with random forest classifier, and correction of manual mislabelling, as compared to U-Net in Dragonfly. Legend: Blue – dense textile,
Orange – bones, Green – soft parts, Pink – terracotta.

Fig. 2. 3D rendering of the segmented MHNGr.ET.1456 (ibis) mummy, showing the parts labelled as bones. Left to right: i) U-Net
implementation in Dragonfly, ii) initial ASEMI implementation, iii) tuned ASEMI segmenter with RF classifier, iv) tuned ASEMI
segmenter with NN classifier.
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Tab. 1. Intersection-over-union results for individual labels and overall accuracy for four specimens. Legend: U-Net – Dragonfly
implementation; RF – ASEMI segmenter with random forest classifier; NN – ASEMI segmenter with neural network classifier.

MHNGr.ET.1023 (dog) MHNGr.ET.1017 (raptor) MHNGr.ET.1456 (ibis) MG.2038 (ibis in a jar)
Label U-Net RF NN U-Net RF NN U-Net RF NN U-Net RF NN
Bones 92.2% 76.2% 85.5% 88.7% 86.2% 81.9% 93.4% 96.0% 90.5%
Teeth 43.2% 14.5% 46.6%
Feathers 69.3% 61.6% 64.9% 67.7% 21.5% 28.7%
Soft parts 87.4% 70.3% 72.9% 77.4% 66.1% 66.4% 92.8% 58.8% 81.6%
Soft powder 74.9% 58.3% 71.3%
Stomach 95.9% 84.8% 80.4%
Snails 87.2% 60.0% 54.2%
Textiles 93.1% 83.6% 85.1% 96.5% 90.8% 91.4% 86.2% 82.7% 82.3%
Balm textile 85.3% 81.1% 80.5%
Dense textile 81.0% 66.5% 67.9% 67.0% 57.5% 62.8% 96.5% 78.0% 78.7%
Natron 60.4% 36.9% 22.0%
Ceramics 78.8% 67.7% 65.3%
Terracotta 99.8% 98.9% 99.3%
Cement 94.4% 74.8% 78.2%
Wood 84.4% 76.8% 94.8%
Insects 25.4% 4.6% 4.5%
Powder 96.8% 70.9% 71.8%
Unlabelled 99.2% 97.7% 98.7% 97.7% 95.0% 89.9% 99.0% 97.1% 98.8% 99.4% 97.0% 98.5%
Overall 98.9% 96.5% 97.7% 97.2% 94.2% 94.3% 97.4% 94.6% 96.8% 99.4% 96.0% 97.2%

lished deep learning models, making it feasible to
use deep learning with a full 3D context. This should
allow us to get the accuracy we have observed with
deep learning models without the discontinuities that
exist with current 2D-context approaches.

2) Extend our segmenter to use an incremental learning
approach, allowing the iterative improvement of a
learned model as further specimens are segmented.
This would enable the use of a model trained on one
or more specimens to segment a completely new
specimen, with reduced user input. Such an exten-
sion is necessary for the automatic segmentation of
collections of related mummies, which is currently
not feasible.

3) Integrate our tool within a suitable software frame-
work for volumetric image editing. This would
allow seamless use of our segmenter from within
the same environment already used to analyse these
volumes, where memory allows.

4) Optimise our implementation for speed, to realise
the complexity advantage of our method, also mak-
ing use of high-performance computing (HPC) re-
sources available in a user-friendly way.

5) Test our system on a much larger set of synchrotron
microtomography scans, ideally in an operational
environment, to ensure its readiness.

5.2. Project Synergies and Outreach

To implement the steps listed previously, the consortium
would ideally be expanded to include an industrial mem-
ber with background in developing tools for volumetric
image editing. This would particularly facilitate steps 3
and 4. We believe the current consortium already has the

necessary skill set for steps 1 and 5. However, for step 5
it may be useful to collaborate with other organisations
that need to segment large volumes of a related nature.

During ATTRACT Phase 1, we actively disseminated our
work and results in various ways:

• A scientific presentation at the Workshop on Cul-
tural and Natural Heritage, ESRF-EBS, January
2020. The entire workshop was live streamed and
remains available on the ESRF YouTube channel.

• A presentation at the Data Science Research Plat-
form Seminar Series, University of Malta, with at-
tendees from across University and external entities.

• Two interviews on national TV, during the live
morning programme TVAM, and for the series Ras
Imb Ras. Video clips are available on our website,
courtesy of Public Broadcasting Services Ltd.

• Regular articles on the project website about ongo-
ing activities.

These activities have strengthened our links with the local
media, and we expect to promote our work in a similar
way in Phase 2, should our project be chosen for funding.

5.3. Technology application and demonstration
cases

The primary demonstration case in Phase 2 would re-
main the application to synchrotron microtomography
of mummified remains. However, with the new BM18
beamline at ESRF-EBS, it is expected that much larger
specimens, including human mummies, will be imaged
with multi-resolution approach. We would also like to
apply our automatic segmenter to collections of related
mummies, enabling a statistical analysis which is at
present impractical. These depend on the algorithm up-
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grades planned for Phase 2. A related demonstration case
that we intend to include in Phase 2 is the application
in paleontology, which is an important research topic at
the ESRF, and where we have seen significant interest
during our presentation at the Workshop on Cultural and
Natural Heritage. Consortium members already have a
sizable collection of synchrotron scans of paleontological
samples, ready for further analysis. These samples are
expected to be harder to automatically segment, due to
the lower contrast inherent in the nature of the samples.
Finally, we also intend to test our segmenter on the
sizable collection of scans of human organs currently
being generated at the ESRF. It is expected this would
be of use in the fields of medicine and health sciences.

The European Research Infrastructure community is al-
ready represented in ASEMI through the ESRF. The
technology application cases chosen are already active
research areas at the ESRF, so that the results of this
work are of direct relevance to the work done there.

5.4. Technology commercialization

So far we focused on the feasibility of our tool, and on
the scientific application of its results. However, there
is clear commercial interest in the integration of these
technologies within existing tools for volumetric image
editing and analysis. During Phase 1, in fact, we have
seen the introduction of machine learning segmentation
tools in existing commercial products. Hence, it is clear
that the time could not be more opportune to commer-
cialise the work done in this project. Concretely, we
envisage two options for commercialising our tool. The
simplest is to create a spin-off company to commercialise
the tool as a plugin for existing volumetric image editors,
implemented through their published Application Pro-
gramming Interface (API). An alternative is to promote
our tool with software houses that produce volumetric
image editors, and if any show interest, to license our
tool for integration within their software.

5.5. Envisioned risks

The biggest potential difficulty in our Phase 2 plans
is the feasibility of reducing the complexity of deep
learning models, in a way that allows their extension to
3D contexts without a step change in complexity. While
we believe this is possible, similarly to the complexity
reduction for conventional features as used in the ASEMI
segmenter, we also have a contingency plan in case this
proves problematic. An alternative approach is to apply
deep learning with a 2D context independently to the
three orthogonal planes, and fuse these outputs with that
of our segmenter.

Other risks are easier to mitigate. If there is insufficient
engagement by software companies with respect to in-

tegrating our tool within an existing volumetric image
editor, we can always implement it ourselves as a plugin
in software with a public API. We have already verified
that this is possible with Dragonfly, for example. The
small possibility of people leaving the team is mitigated
by the knowledge overlap that exists within the team.

5.6. Liaison with Student Teams and Socio-
Economic Study

With the collaboration with MSc student teams becoming
an integral part of Phase 2, it is critical to have the
necessary support within the project to make this work.
In ASEMI, this requires input from at least two experts:
an application domain expert to explain the context of
the problem and the manual segmentation process, and
an algorithm expert to explain how we tackle the problem
in ASEMI. A small student liaison team, consisting of
these experts, will be identified and its activities budgeted
for, to ensure successful engagement with this action.

Similarly, a small project promotion team will be iden-
tified, with its activities budgeted for. This ensures that
the necessary manpower is available for promotional ac-
tivities related to ATTRACT. This also benefits activities
such as media interviews, part of any successful project.
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