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ABSTRACT  

 

Glioblastoma is an aggressive brain tumour with no cure. Improved non-invasive imaging biomarkers are needed for early evidence-

based therapy-related decisions. Magnetic Resonance-derived data (imaging, MRI and spectroscopic imaging, MRSI) can be translated 

into imaging biomarkers of successful preclinical glioblastoma therapy. MAGRes pursued a breakthrough combination of MRI+MRSI 

data, a step beyond present strategies based only in tumour volume. MAGRes also aimed to develop a software tool for MR post-

processing, MRSI artefact removal and machine learning analysis, allowing combined visualisation. This open-source software will pave 

the way to a scalable system, which could handle clinical data in the future.  
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1. INTRODUCTION  

Glioblastoma (GB) is the most frequent aggressive 

primary brain tumor in adults. GB prognostic is 

invariably bad: average survival rates are 16-18 months 

after diagnosis, highlighting the need of improving 

therapy response assessment, pursuing early and 

confident information useful for personalizing therapy 

schedules. Therapy response follow-up is performed 

following strict guidelines, centered in aspects such as 

tumor volume and contrast uptake using defined 

categorizations. Magnetic resonance imaging (MRI) is 

often used for these categorizations, through criteria such 

as response assessment in neuro-oncology (RANO) [1] 

and Response Evaluation Criteria in Solid Tumors 

(RECIST) [2], which are not exempt of 

misinterpretation. Moreover, the participation of the 

immune system in therapy response is widely 

acknowledged, although there is a lack of noninvasive 

biomarkers to assess whether such participation is taking 

place, which is a determinant factor in response to 

therapy. There is still much room for improvement in 

therapy response follow-up in GB, which can be 

addressed considering multiparametric MR analysis.  

 

MAGRes breakthrough approach uses changes in the 

tumour metabolome upon successful therapy, related to 

efficient host immune system action against GB [4]. This 

is initially sampled by magnetic resonance spectroscopic 

imaging data (MRSI) and later refined into an MRI-

based biomarker for efficient immune system action with 

clear translational potential.  

 

Results with treated (responding) and untreated GB-

bearing immunocompetent mice showed that MRI 

classification analysis with a radiomics approach 

achieved 75% hold-out accuracy with only two features, 

rising up to 90% when using 10 radiomic features. This 

was based in T2w MRI acquisitions, suggesting that 

basic MR sequences contain the essential information for 

biomarker performance, when properly guided (MRSI-

training) and analysed. Moreover, direct MRSI-based 

analysis yielded over 90% accuracy (14 -17 sources) and 

the paradigmatic information extracted showed 

metabolomic changes compatible with response in 

previous work [3,5], such as increases in Polyunsaturated 

fatty acids (PUFA) and lactate (Lac). This type of 

metabolomics changes in responding GB are related with 

immune system presence/action (e.g. 

macrophages/microglia). The next step will entail using 
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machine learning (ML) advanced multi-view learning 

methods to properly combine/synergize information 

from both MRI and MRSI. A software prototype has 

been launched for proper 3DMRSI/MRI visualisation, 

still pending the incorporation of part of the ML-based 

approaches. 

2. STATE OF THE ART  

MR-based techniques are the most common non-

invasive approach for GB diagnosis and therapy 

response follow-up. Current procedures to assess 

whether a patient receiving therapy for GB is properly 

responding, are performed through MRI explorations, 

i.e. checking for changes in tumour size and contrast 

enhancement. However, this is not free of limitations 

such as the progression/ pseudoprogression dilemma [6]: 

one month after finishing the standard treatment, 

contrast-enhancing foci may appear on MR images 

reflecting either inflammation or relapse. The only way 

to confirm patient outcome is to wait for the next MR 

exploration, performed two months later. This means 

that this temporal window is usually lost, with no change 

in treatment: if treatment is failing, precious time and 

resources have been wasted. This may become even 

more challenging for the novel immunotherapy 

approaches for which good non-invasive biomarkers of 

early response are still lacking [7]. PET-based 

approaches for imaging immune system have been 

proposed [8] but it is not feasible to submit patients to 

repeated PET explorations, as opposed to MR. Efficient 

therapeutic strategies may recruit/enhance host immune 

system to fight against tumour, but there is no current 

way to assess it with the standard MR follow-up 

protocol. In other words, we are still missing MR image 

feature(s) that can inform the radiologist about anti-

tumour immunity. Information originating from MRSI 

could help to approach this goal [4,5] but its use is not 

currently integrated in the clinical pipeline. The complex 

steps for processing, postprocessing and interpreting, in 

addition to the lack of standardized file formats (as 

opposed to the standard MRI formats) hamper this 

integration. MAGRes aims to tackle these issues and help 

to unlock the outstanding predictive power of MRSI 

information in combination with, MRI leading to its 

integration into clinical practice, as early biomarker of 

therapy response in GB. 

3. BREAKTHROUGH CHARACTER OF 

THE PROJECT  

MAGRes proposes a change of paradigm in the follow-

up of therapy response in GB patients, mostly centred in 

MRI features, acquired months apart. Yet it is true that 

Radiomics approaches are being currently evolved, these 

are focused only on MRI features. Our proposal goes one 

step beyond, integrating the MRSI prior knowledge with 

advanced ML analysis into the biomarker development 

protocols. The metabolomic and micro-environment of 

GB changes under successful therapy, preceding gross 

anatomical changes, thus relevant hints can be obtained 

incorporating MRSI data. This is not being currently 

used in the standard pipeline for therapy follow-up, 

mostly due to complex postprocessing and interpretation 

steps, in addition to the lack of standardization in file 

formats. Moreover, radiologists are used to “imaging-

like” outputs and the use of crude spectroscopic 

information requires previous knowledge about the 

chemical environment of the observed compounds. The 

current vendor software packages can offer imaging 

transformations based on a single metabolite (or two 

metabolite ratio), disregarding the rich information 

coming from the whole spectral pattern. We propose to 

provide radiologists with an innovative output, built over 

a large dataset of MRI+MRSI data, where analyses use 

both types of information, and where output may be 

refined in comparison with studies carried out with MRI 

alone.  

Our approach can provide clinicians with the possibility 

to ‘image’ the local immune system action through 

MRSI-guided information, which is a reliable hint about 

therapy effectiveness, not possible with current follow-

up methods. This analysis will produce an output that 

confidently informs clinicians whether a therapeutic 

approach is producing suitable anti-tumour immune 

response or not. It will provide a robust basis for clinical 

decisions in therapy management, as early as 1-2 weeks 

after a new therapy start, as opposed to 2 months with the 

standard procedures (see Table 1). Our working 

hypothesis is that preclinical results obtained reflect local 

tissue changes due to immune system action that are 

reproducible regardless of the therapeutic approach used 

or the species being examined. In a second step, ML 

approaches will be integrated into an initial software 

version that, once proper MRI input is provided, must be 

able to process, postprocess, and evaluate MR-files. This 

will provide doctors with an estimation on how effective 

the current therapy is recruiting efficient immune system 

attack onto tumour, even before changes in tumour 

volume can be detected. This will save time and financial 

resources, relevant both for patients and health systems. 

 

Tab. 1. Comparison of the estimated time for confident 

therapy response assessment 

 

Method 
Estimated time for confident 

therapy response output 

Standard follow-up 

procedures 
8-12 weeks after new therapy start 

Follow-up proposed in 

MAGRes 
2 weeks after new therapy start 
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4. PROJECT RESULTS 

 

Our analysis within MAGRes was essentially centred in 

retrospective cases with available T2w MRI and single- 

or multi-slice MRSI of control (untreated) and 

Temozolomide (TMZ)-treated GB-bearing mice. This 

cohort secured that consistent results were achieved 

which could serve for future validation and translational 

studies. 

 

MRI data analysis 

Two feature selection procedures were used. The results 

for the feature subsets corresponding to the two used 

approaches, varying from 1 to 30 radiomic features, are 

presented in Fig. 1. For the basic statistical t-test, the 

features are directly ranked by relevance. In the more 

involved wrapper approach, instead, each subset 

corresponds to the best results for that number of 

features. Radiomic features discriminated fairly well 

between treated and control cases in our preclinical 

study.  

 
Fig. 1. Representation of performance of different classifiers 

approached over the number of Radiomics features selected (N 

most relevant features with N = 1…30) for MRI data. LDA: 

Linear Discriminant Analysis, SVM: Support Vector 

Machines, KNN k-Nearest Neighbour.  

The embedded method found excellent discriminant 

values with 7 to 9 radiomics features (Area Under the 

ROC Curve: AUC, used for performance evaluation, 

0.95-0.97). With the wrapper approach, an AUC of 0.96 

was achieved with only 3 features, namely Gray Level 

Run Length Matrix type GLRLM-SRHGE and GLRLM-

RLV, and Gray Level Size Zone type GLSZM-LZHGE. 

These results agree with the available literature; for 

example [9] describes features such as GLRLM 

correlating with histopathological features such as Ki67 

in high-grade glioma. Recent work [10] also described 

the value of GLRLM and GLSZM for evaluating 

response to therapy in GB, being able to distinguish 

pseudoprogression from true progression. The ten most 

relevant radiomics features found in our approach are 

listed in Table 1, while Fig. 2 shows representative T2w 

MRI from different mice with evident changes observed 

in tumour zones, derived from treatment. More details 

can be found in [11].  

 
Fig. 2. Examples of control (left, mouse C583) and treated, 

transiently responding to TMZ according to histopathological 

parameters (right, mouse C574) murine GL261 GB tumours. 

Note the appearance of hypointense zones (red ovals) in T2w 

MRI from the treated mouse, noticeably different from the 

more homogeneous appearance observed in the control case.  

Tab. 1. Feature ranking by t-test and wrapper feature selection 

methods (first 10 features).  

Ranking Position t-test method Wrapper method 

1 Perimeter9 GLCMEntropy 

2 Perimeter8 Perimeter9 

3 GLRLMRLV GTDMComplexity 

4 Perimeter7 GLSZMSZLGE 

5 Euler7 Area16 

6 Euler6 Area13 

7 GLRLMGLN GLRLMRLV 

8 Perimeter6 GLRLMRLN 

9 GLCMVariance Euler1 

10 GLSZMGLN GLRLMSRE 

 

MRSI data analysis 

The results obtained with MRSI through convex-NFM 

analysis of sources (paradigmatic spectra extracted from 

tumour regions from all studied mice, control and 

treated) were overall better than those achieved by the 

best model applied to the radiomic features, being also 

more stable in their evolution over the  selection of 

features (sources in this case). A 20-fold validation 

method was used for analysis. The best results were 

obtained with SVM using embedded+wrapper methods 

for feature selection with AUC higher than 0.997 (14 to 

17 sources used).  The aforementioned sources showed 

the expected changes in metabolites previously described 

by us in [3] as relevant for distinguishing among control 

and responding GL261 murine GB, such as PUFA, Lac, 

glutamate-glutamine (Glx) and alanine (Ala). It is worth 

noting that the appearance of PUFAs after preclinical 

brain tumour treatment has been described by others 

[12], probably reflecting local apoptosis as a 
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consequence of therapeutic protocols. One of the benefits 

of the MRSI per-voxel analysis is the possibility to 

ascertain how each part of the tumour is responding, 

allowing us to unravel its heterogeneity. Even if 

considering a mouse as responding to a specific therapy 

as a whole, we still cannot be sure whether the tumour is 

consistently and homogeneously responding to therapy 

or not.  The key advantage of our analytical pipeline is 

that the classification results come with a quantification 

of the certainty of the classification prediction that is 

anatomically bounded. This means that we can 

graphically represent, using nosological images, such 

level of certainty over the anatomy of the tumour, as 

exemplified by the images in Figure 3. 

 

 

 Fig. 3. Examples of nosological visual representation of the 

classification results for MRSI data from extracted sources. 

Horizontal T2w MRI images of GL261 GB afflicted mice, 

superimposed with representative nosological maps of the 

classification reliability in different tumour regions for the 

SVM classifier with 10 features (sources). The color-coding 

(scale on the right) shows how reliable the model classification 

output is, representing a posterior probability. The lighter the 

colour, the more reliable and vice versa. The red contour over 

some voxels represents those misclassified by that model. The 

colour bars at the bottom represent the true class of the case, 

whereas the colour bars at the top represent the percentage of 

voxels classified as treated or control for each case. 

Preliminary software version launched 

A preliminary software version for visualization of 3D 

MRSI-based nosological images of therapy response 

acquired as in [5] superimposed to MRI was launched by 

month 6 of ATTRACT (see a screenshot in Fig. 4). 

This software called IMAGINEs (Imaging Immune 

System) is based on open source packages like 3D slicer, 

so that it can be made available to interested researchers, 

being the initial step towards having a fully functional 

programme including the ML approaches developed. 

Unfortunately, it was not possible to integrate all 

functions due to several challenges faced during 2020 

and some processing steps should still be performed with 

other software modules. A possible ATTRACT Phase 2 

may allow for proper software development, testing and 

validation, first with preclinical data and later on, with 

clinical data, as described in section 5.3.  

 

 Fig. 4. Screenshot of the preliminary version for 3D-MRSI 

visualisation launched. Left, menu for uploading files. Right, 

different views of the acquired MRI (horizontal, sagittal, 

coronal) with the MRSI-based nosological image of therapy 

response [3,4,5] superimposed in colour.  

5. FUTURE PROJECT VISION  

5.1. Technology Scaling  

The MAGRes technology is presently at TRL level 3-4, 

i.e. preclinical proof-of-concept performed and under 

molecular/cellular validation. Scaling up to TLR 5-7 

requires coordination with scientific, commercial and 

clinical actors and application of cutting-edge ML 

approaches such as transfer learning (ensures 

applicability of preclinical findings to clinical pipelines). 

It is worth mentioning that MAGRes members are 

involved in a recently granted network (XARTEC Salut 

XARDI-00016, Generalitat Catalunya, 2020-2022, 47 

partners, 1.3 M€) which contribute to increase TRL for a 

sustained level 4 and prepare MAGRes for Phase 2. 

5.2. Project Synergies and Outreach 

Project Synergies 

Processing/postprocessing MR pipelines evolution will 

benefit from participation of long-term collaborators at 

LJMU. Major clinical scanner vendors (Philips, GE 

HealthCare, Siemens) are already familiarized with the 

MAGRes concept through joint participation in EU  ITN 

requests with CIBER and UPM. They, jointly with 

Bruker, the main preclinical scanner manufacturer, will 

be approached for MAGRes Phase 2 

participation/advice. Prototype validation requires 

participation of academic hospitals such as UMCU, 

UKER (also involved in joint ITN requests), as well as 

Hospital Sant Joan de Déu for paediatrics. Partnership 

with a nationwide infrastructure network, NANBIOSIS 

is also envisioned.  

Regarding other ATTRACT Phase 1 projects, synergies 

are foreseen with TOPiomics pursuing early variations in 

https://www.slicer.org/
https://www.ljmu.ac.uk/about-us/staff-profiles/faculty-of-engineering-and-technology/department-of-applied-mathematics/sandra-ortega-martorell
https://www.philips.nl/healthcare/solutions/customer-service-solutions/customer-care-center/distributors-europe
https://www.gehealthcare.com/
https://www.gehealthcare.com/
https://www.siemens-healthineers.com/es/
https://www.bruker.com/nc.html
https://www.umcutrecht.nl/en/Research
https://www.uk-erlangen.de/en/
https://www.sjdhospitalbarcelona.org/en/diagnostic-imaging
http://www.nanbiosis.es/
https://attract-eu.com/selected-projects/topological-radiomics-topiomics-early-detection-of-genetic-abnormalities-in-cancer-treatment-evolution/
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tumour phenotype influencing outcome. They also aim 

to model multi-view spaces with Small Sample Size data 

which is relevant for both projects.  

 

Dissemination/Outreach 

The following actions will be taken in a potential 

ATTRACT Phase 2 (some already implemented in Phase 

1):  

-  Open access reporting to high impact factor 

journal/conferences. 

- Participation in national, European, worldwide 

scientific conferences to communicate results and 

demonstrate prototype performance. 

- Software beta versions made available from public 

repositories  

 

Public engagement strategy  

General scientific community: scientific conferences 

and open access publication.  Clinical community: 

presentations targeting clinical audience focusing in the 

impact of our results in patient’s quality of life and 

survival. Scanner Vendors: Non-participating Phase 2 

companies invited to dissemination sessions. Brain 

cancer patients: “Helping Cancer” will be contacted to 

provide information to cancer patients with appropriate 

language.  General public: make MAGRes topics 

understandable to EU citizens. Open day meetings, talks 

in science pubs and use of social media.  
 

5.3. Technology application and demonstration 

cases 

The MAGRes technology will have a positive impact in 

Health, Demographic Change and Wellbeing. Aspects 

such as personalised medicine, innovative health and 

systems and big data solutions will be approached.  

The development of a software package must have in 

mind users’ needs and desired outputs, in our case to 

produce a product that fulfils actual needs faced in 

clinics. For this, a user requirements list will be built to 

target clients. Still, although the idea is to benefit from 

MRSI to improve MRI algorithms, we may also consider 

providing users the possibility to directly deal with their 

own MRSI files. Having this in mind, we envision two 

validation levels. 

A first round of validation at preclinical level:  

1. Integration of the ML algorithms and output 

visualization.  

2. Incorporation of MRI and MRSI processing steps, 

(preclinical first). 

3. Validation with ‘new test cases’: A) longitudinal 

cases along standard GB treatment, B) 

longitudinal cases with different therapeutic 

strategies, C) chosen cases for molecular/cellular 

validation. 

This will increase robustness and future applicability of 

our response biomarker and help to clarify 

methodological questions at preclinical level. However, 

MAGRes aims to help in GB patient management and a 

clinical demonstration must be planned with chosen 

clinical centres. A prospective study would be the ideal 

scenario, envisaged as follows: 

1. Early MRI follow-up planned with GB patients 

under therapy. Predicted outcome registered 

both with MAGRes biomarker and MRI using 

standard criteria. 

2. Patient ‘standard’ follow-up performed in the 

usual way and outcome registered as in point 1. 

Added value will be assessed when comparing 

how using the MAGRes biomarker would have 

changed clinical decision at early times, not 

possible with the standard approach.  

A final evaluation from clinicians about software 

usability, user-friendly characteristics, and willingness to 

incorporate it into clinical-decision making will be asked 

for.  The expected work packages in such project would 

be 1) Management, 2) Preclinical data acquisition and 

cellular validation, 3) ML approaches, 4) Software 

development 5) Clinical data acquisition and software 

testing. 

The expected gross budget, considering different levels 

of technology validation, would be of 400.000€ for the 

preclinical setting and ca. 1.000.000€ for joint software 

development, clinical data acquisition and evaluation, 

and software evaluation procedures.  

5.4. Technology commercialization 

The biomarker and software development approach 

proposed in MAGRes, although firstly built over 

preclinical data, should be of great interest in a clinical 

environments. We foresee that the main MR 

clinical/preclinical scanner vendors will be interested in 

integrating it in their own machine/offline packages. 

Companies such as Philips, Siemens and GE 

Healthcare have demonstrated interest and participated 

in a parallel, extended approach presented as a Marie 

Sklodowska-Curie action (Innovative Training 

Networks, ITN) in which CIBER was also involved. 

Integrating our software approach may enable clinicians 

to use MRSI information in a robust platform without the 

need of large time-consuming learning curves.  

5.5. Envisioned risks 

Tab. 1. Risks to be considered in a potential ATTRACT Phase 

2 project and the corresponding mitigation strategies proposed.  

Risk Mitigation Strategy 

Poor predictive performance 
from biomarkers found in 

Low to Moderate risk based on 
previous research. Increase the 

https://www.helpingcancer.tv/
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preclinical models, so that 

biomarkers need to be found de 

novo in humans within a 
limited timeframe 

number of human cases for the 

development of predictive 

pattern recognition models 

Delay in the implementation of 

the software tools for image 

analysis and predictive 
modelling 

Low risk. Existing in-house 

code will be made available 

together with training a set of 
publicly available libraries.  

Absence of some commercial 
vendors in the project prevent 

us to develop proper strategies 

for processing/postprocessing 
strategies in the specific frame 

of this software 

Moderate risk. Collaboration 

with researchers from previous 

jMRUI project, currently 
involved in INSPIRE-MED 

ITN, in which part of 

ATTRACT researchers also 
participate. Software package 

can be offered as an 

independent module, regardless 
of scanner vendors 

5.6. Liaison with Student Teams and Socio-

Economic Study 

Student teams: it was not feasible to interact with M.Sc. 

level students along the Phase 1 project. However, 

researchers involved in MAGRes have ample expertise 

in supervising MSc and PhD students. Facing a possible 

Phase 2, students will benefit from transversal 

knowledge ranging from preclinical tumour 

management, MR processing/postprocessing, advanced 

ML + biomedical signal analysis, and software 

development/methodology integration.  

Socio-economic study: MAGRes researchers will 

contribute to the socio-economic study in interviews or 

enquiries organized in Phase 2. We can provide up-to-

date information on how GB therapy-response follow-up 

is evolving at collaborating clinics. An estimation on 

how health system resources will be saved with 

MAGRes approaches, in comparison with the standard 

currently applied, can be provided upon request.  
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