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INTRODUCTION 27 

Substrate-based catheter ablation is an effective, invasive treatment for recurrent episodes of 28 

scar-related ventricular tachycardias (VT), but the rate of recurrences remains still high. (1) 29 

Analyzing all the intracardiac electrograms requires acquiring a full electroanatomical map 30 

(EAM) of the area of interest, a process which is challenging and time-consuming. This 31 

increases the likelihood of having procedure-related complications. 32 

One of the main objectives of VT substrate ablation procedures is to localize and ablate the site 33 

of origin (SOO, exit site) of the clinical VT, whose localization can be inferred from the VT 34 

morphology in the 12-lead ECG. (2) There are several algorithms that help localizing the SOO 35 

from ECG tracings, but they are solely based on visual inspection on the ECG, use nonstandard 36 

definitions for heart regions/areas and/or have applicability restrictions that prevent their use in 37 

all myocardial substrates. (3) 38 

On the other hand, VT substrate ablation requires eliminating not only the clinical VT-SOO, 39 

but the whole arrhythmia substrate to abolish additional VT circuits. (4–6) Recent studies have 40 

showed that guiding the ablation with color-coded pixel signal intensity (PSI) maps delivered 41 

from pre-procedural late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) 42 

imaging, results in more efficient procedures and improved VT recurrence-free survival. (7–9) 43 

We hypothesize that the identification of scar-related VT-SOO can be fully automated by 44 

combining the surface ECG and the LGE-CMR imaging data into a machine learning (ML) 45 

algorithm integrated into a commercially available post-processing software. This is a proof-46 

of-concept study to evaluate the feasibility of the ML algorithm and usefulness of the new 47 

software.  48 
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METHODS 49 

Study populations 50 

Training population 51 

To train the ML model, all patients with documented VTs in a 12-lead surface ECG who were 52 

referred for ablation from January 2015 until December 2019 were included in the study, 53 

irrespectively of the presence of structural heart disease (SHD). Patients with ventricular 54 

arrhythmias arising from the right ventricle were excluded. 55 

Validation population 56 

To test the ML model’s accuracy, consecutive patients with scar-related (reentry mechanism) 57 

sustained VTs referred for ablation (i.e. invasive treatment of the arrhythmia) from December 58 

2019 until July 2020 were included. 59 

The study complied with the Declaration of Helsinki, and the local ethics committee approved 60 

the study protocol.  61 

 62 

Study workflow and objectives 63 

The first step of the study was to develop and evaluate a complete pipeline that uses the surface 64 

ECG for predicting the SOO/SgO (site/segment of origin) of scar-related VTs (figure 1). A total 65 

of four ML models were used to predict/classify the location of the VT-SgO from the VT-ECG 66 

tracings, using the American Heart Association (AHA) 17-segment model. 67 

The second step was to integrate this pipeline into current commercial software (ADAS 3D LV, 68 

ADAS3D Medical SL, Barcelona, Spain). This commercial software, with CE- and FDA-69 

approval, identifies, from pre-procedural LGE-CMR imaging data, the border zone corridors 70 

(BZC) embedded within the myocardial scar structure. It also allows to export the PSI maps to 71 

the EAM navigation systems to guide ablation procedures. 72 

The new version of the software is intended to predict the VT-SgO using multimodal, non-73 
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invasive information: from pre-procedural 12-lead ECG and LGE-CMR. The primary objective 74 

of the study is to test the complete integration of the new software into the clinical practice, 75 

evaluating its accuracy in a prospective series of patients referred for VT substrate ablation.  76 

 77 

Reference algorithm for VT-SOO/SgO detection 78 

A previously described visual ECG algorithm (3) was used as a reference to compare the 79 

sensitivity and specificity of the algorithm trained by ML with real anatomical reference. This 80 

visual algorithm can be used to predict the SgO of LV scar-related VT regardless of the 81 

underlying heart disease and the epicardial versus endocardial VT origin. Briefly, the method 82 

is based on QRS axis in the frontal plane and transition in V3/V4 precordial leads (figure 2); 83 

the SgO is referred using the AHA 17-segment model. (10) 84 

 85 

Development of machine learning models for VT-SOO/SgO detection 86 

The development of the model consists in an annotation phase and a training phase. The 87 

annotation phase consists in retrieving the data to be processed. The model training, on its 88 

behalf, consists of the following steps (figure 1): data selection and preprocessing, data 89 

augmentation, feature extraction, feature selection and model training. 90 

Annotation phase 91 

The data annotation phase was performed by extracting the VT-ECG morphologies and their 92 

respective associated SgO for the study population. For this purpose, both clinical VTs and 93 

paced QRS morphologies from the LV were included in the database. Clinical VTs were 94 

included whenever their SOO/SgO could be reliably identified from the EAM data during 95 

ablation procedures. For paced morphologies, the location of the catheter when stimulating was 96 

considered the SOO/SgO. The above identified locations in the EAM were subsequently 97 

projected into the PSI maps and were, in turn, used as classification targets for the identification 98 
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of the VT-SgO, by assigning the closest element in the AHA 17-segment model. In cases when 99 

the SOO occurred at the intersection of several segments, the most probable one was marked 100 

as valid and the remaining plausible segments were stored for further data augmentation. A 101 

secondary set of annotations, for completeness, was registered taking into account signal-based 102 

criteria for the identification of the SgO according to a clinical algorithm. (3) Once the SgO 103 

associated to the morphology was annotated, the QRS complex was manually delineated by a 104 

cardiac electrophysiologist, marking its onset and offset.  105 

Training phase 106 

• Data selection: The first step of the training phase is data selection, which consists in 107 

the division of the dataset into non-overlapping train and test sets, containing 50% of 108 

the data each, in a stratified manner. The training set was used for model development 109 

and tuning, whereas the test set was reserved for assessing the model’s performance. 110 

Data preprocessing, whose focus is finding better data representations for increasing 111 

model robustness, was performed in two steps. Firstly, the QRS was manually 112 

delineated. Secondly, the selected QRS was cropped, zero-corrected, and scaled to the 113 

magnitude of the highest voltage lead within the beat. Data augmentation, on its behalf, 114 

consisted in the application of mix-up, an all-purpose data augmentation technique that 115 

creates synthetic datapoints from the existing database, allowing for a better 116 

identification of the inter- and intra-segment separation criteria. 117 

• Feature extraction: The second step of the training phase was feature extraction, which 118 

was performed by retrieving a set of signal-based, wavelet-based and spectral-based 119 

features specifically tailored towards ECG processing. These features allow the 120 

description of the data to be analyzed in a more robust manner, by structuring the 121 

difficult-to-process raw ECG recording into a finite set values that have semantical 122 

meaning. These features comprise the computation of intra-lead (e.g. min/max 123 
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voltages/areas or aggregate of magnitudes of different frequential bands), inter-lead 124 

(e.g. does lead I have a higher magnitude than lead III?) and global (e.g. precordial 125 

transition location according to different means of computation) characteristics. A total 126 

of 357 markers of the QRS complex were extracted for characterizing its behavior. 127 

• Model training: The extracted features were then employed for training a classification 128 

model, support vector machines (SVM). A forward feature selection step was also used 129 

to filter out features that were highly correlated or that did not enhance the model’s 130 

accuracy. (11) The model was trained using 5-fold cross-validation for finding the most 131 

appropriate model configuration. 132 

The model’s performance was assessed by comparing the predicted and the true SgO on the 133 

held-out test set, and compared to its clinical counterpart. Given the probabilistic formulation 134 

of the model, a secondary measurement of performance was provided, consisting in the 135 

accumulated accuracy to the second and third most probable SgO within the prediction. 136 

 137 

Anatomic reconstruction of the heart and scar characterization using LGE-CMR 138 

The validation population consisted of 15 consecutive patients with scar-related (reentry 139 

mechanism) sustained VTs referred for ablation (i.e. invasive treatment of the arrhythmia). All 140 

of them underwent a LGE-CMR test prior the procedure using a 1.5-Tesla scanner (ACHIEVA, 141 

Philips Healthcare, Best, The Netherlands). Contrast-enhanced images were acquired 10 142 

minutes after bolus injection of 0.2 mmol/Kg Gadobutrol (Gadoyist®, Bayer Hispania, 143 

Barcelona, Spain) using a commercially available, free-breathing, ECG-gated, navigator-gated, 144 

3D inversion-recovery, gradient-echo technique. Slice thickness was 1.4 mm, with no gap 145 

between slices. The field of view was set at 360 mm and matrix size was kept to 256 x 256 146 

pixels to yield an isotropic spatial resolution of 1.4 x 1.4 x 1.4 mm. In patients previously 147 



7 

implanted with an ICD, LGE-CMR was performed using a specific wideband sequence to avoid 148 

device artefacts. 149 

All LGE-CMR images were analyzed using a previously described protocol. (12) A full left 150 

ventricular (LV) volume was reconstructed in the axial orientation, and the resulting images 151 

were processed with ADAS 3D LV software (ADAS3D Medical SL, Barcelona, Spain). Color-152 

coded pixel signal intensity (PSI) maps based on LGE-CMR images were projected to 10 153 

myocardial shells (from endo- to epicardium), following a trilinear interpolation algorithm. The 154 

hyperenhanced area was characterized as core zone, border zone (BZ) or healthy tissue using 155 

40 ± 5% and 60 ± 5% of the maximum PSI as thresholds. (12) The total scar mass, BZ mass, 156 

and core mass in each shell were automatically measured using the ADAS 3D LV software. 157 

Scar heterogeneity was defined as BZ percentage of the scar. BZ channels (BZCs) were defined 158 

as continuous corridors of BZ surrounded by scar core or an anatomical barrier (i.e. mitral 159 

annulus) connecting two areas of healthy tissue. The BZC mass was automatically computed 160 

using a full-automated tool embedded within the ADAS 3D LV software. 161 

 162 

Pipeline integration into ADAS 3D LV software 163 

The· SVM classifier incorporated into the ADAS 3D LV software to enable identifying the 164 

location of the SgO from the VT-ECG tracings, using the American Heart Association (AHA) 165 

17-segment model. The new analysis allowed to import and visualize the ECG-signals from 166 

several polygraphs and includes a new user interface to select the QRS of the VT. Once the 167 

QRS is selected, the software executes the SVM for that particular QRS to obtain the SgO. 168 

Then, the probability of each AHA segment of being the VT-SgO was visualized in a table 169 

(figure 3). The software also includes a new visualization method to display the calculated SgO 170 

overlaid onto the LV visualization of the patient. This visualization allows the user to see 171 

together the post-infarction scar structure derived from the LGE-CMR and the VT-SgO 172 
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overlaid onto the LV. This further allows the user to even identify the heterogeneous tissue 173 

corridor that could be likely responsible for the reentry circuit causing the VT (figure 4). 174 

Finally, the user can export the results to the EAM navigation system in order to guide ablation 175 

procedures. 176 

 177 

Prospective validation during VT ablation procedures 178 

Unselected patients with documented scar-related VT, who were referred for VT substrate 179 

ablation, were consecutively enrolled to test the new ML-trained model of VT-SgO detection. 180 

The ablation procedures were performed according to a previously described protocol. (8) 181 

Briefly, the first step of the procedures was the acquisition of a fast anatomical map of the aorta, 182 

which was then used to integrate the anatomical heart reconstructions derived from a 183 

multidetector cardiac tomography and the LGE-CMR within the spatial reference coordinates 184 

of the CARTO3 (Biosense Webster, Diamond Bar, CA, USA) electroanatomic navigation 185 

system. The actual SgO of each VT was identified according to either one of the following 186 

criteria: i) Presence of presystolic local electrograms not earlier than 50 ms before the beginning 187 

of the QRS and termination of the VT during RF ablation or slow conducting channel exit site 188 

confirmed through entrainment maneuvers together with VT termination during RF ablation; 189 

or ii) achieving a 12/12 QRS morphology concordance with the 12-lead ECG of the VT during 190 

pacing from a site with no more than 50 ms delay between the stimulus artifact and the 191 

beginning of the QRS. The selection of the pacing sites was primarily based on the presence of 192 

BZC entrances identified by the pre-procedural CMR. Based in previous clinical experience, 193 

there is usually about one BZC entrance per AHA segment; that is, the identification of a VT-194 

SgO usually identifies the BZC likely responsible of being the ‘critical isthmus’ of the VT 195 

reentry circuit (figure 5). 196 
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In order to test the accuracy of the new software for VT-SgO identification, once the actual 197 

SgO was recognized, it was compared with the SgO proposed by the software and the SgO 198 

predicted by the reference visual algorithm. The actual VT-SgO was identified according to 199 

data derived from the ablation procedures, anatomically referenced using either one of the 200 

following imaging datasets integrated during the interventions: electroanatomical maps, cardiac 201 

tomography, or LGE-CMR. Finally, a descriptive analysis of the presence of CMR-derived 202 

BZC at the predicted VT-SgO was performed, to estimate the potential ability of the software 203 

to predict the effective ablation target site. (8,13) 204 

 205 

Statistical analysis 206 

Continuous variables are given as mean ± standard deviation or median (interquartile range), 207 

as appropriate. Confidence intervals (CI, α = 0.05) are provided for the model’s performance 208 

metrics. Categorical variables are given as total number and percentages. To compare the means 209 

of 2 variables, the Student t-test or Wilcoxon test were used, as appropriate. Proportions were 210 

compared using the χ2 or Fisher exact test, as appropriate. P <0.05 was considered of statistical 211 

significance. Statistical analysis was performed using IBM SPSS Statistics, version 26.0 (IBM 212 

Corp. Released 2019; Armonk, NY: IBM Corp.).  213 
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RESULTS 214 

Study populations 215 

For the training phase of the ML algorithm, a total of 209 VT morphologies corresponding to 216 

104 patients, recruited from 2015 until December 2019, were used. For the pilot validation of 217 

the ML model, 15 additional patients (‘validation population’) were prospectively recruited 218 

from January until July 2020. The baseline characteristics of these populations are shown in 219 

table 1. In the validation population, 15 clinical VT morphologies were analyzed with the ML 220 

model embedded in the ADAS software platform. Additionally, 62 non-clinical VT 221 

morphologies were induced by pacing the LV at different sites during the ablation procedures, 222 

locating the tip of the catheter at different BZC entrances previously identified with the LGE-223 

CMR. Therefore, a total of 77 potential VT morphologies were used for final testing. 224 

 225 

ML model performance 226 

In the training phase (209 VT morphologies), the ML model provided a one-segment accuracy 227 

of 77%, (CI95% 71 – 83%) with respect to the real signal-based SgO, whereas if the second most 228 

probable SgO was considered its accuracy raised to 92% (CI95% 88 – 95%), and to 94% (CI95% 229 

90 – 97%) if the third most probable SgO was given as valid. The reference visual algorithm 230 

reached a score of 81%, (CI95% 72 – 89%) on the same dataset. The reference algorithm 231 

performed similarly when compared to the one-segment prediction of the ML model (p = 0.32), 232 

but worse if taking as valid the best two or three SgO proposed by the model (p = 0.001 and p 233 

= 0.0001, respectively). 234 

For the validation population (77 VT morphologies), the ML provided a one-segment accuracy 235 

of 88% (CI95% 79 – 95%), 99% (CI95% 93 – 100%) when considering the second most probable 236 

VT-SgO, and 100% (CI95% 95 – 100%) when considering the third most probable VT-SgO. The 237 

reference visual algorithm reached a score of 91%, (CI95% 82 – 96%) on the same dataset. The 238 
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reference algorithm performed similarly when compared to the one-segment prediction of the 239 

ML model (p = 0.55), but worse if taking as valid the best two or three SgO proposed by the 240 

model (p = 0.005 and p = 0.002, respectively). Figure 6 shows an example of correlation 241 

between the VT-SgO predicted by the reference visual algorithm (operator-dependent) and the 242 

ML model, integrated with the LGE-CMR information and ready to be used with the ADAS 243 

3D LV customized software. 244 

 245 

Correlation between scar characteristics and predicted VT-SgO 246 

Main ablation results of the validation population are shown in table 2.  All the patients had an 247 

inducible clinical VT; additionally, a mean of 4.1 ± 0.4 potential VT morphologies per patient 248 

were simulated by pacing the LV at different CMR-derived BZC entrances (figure 5). The 249 

identified myocardial scars (n = 15) occupied an area encompassing a median of 5 (4 – 6) AHA 250 

segments, thus representing a total of 74/255 (29%) scarred AHA segments. A total of 68 BZC 251 

entrances were identified, thus representing a median of 0.83 (0.8 – 1) BZC entrances per 252 

scarred segment. There were only 2/74 (3%) AHA segments showing more than one BZC 253 

entrance; one of them corresponded to a clinical VT-SgO, the other one to a paced VT 254 

morphology.   255 
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DISCUSSION 256 

The main findings of the study are: 257 

• This is the first clinical study to show the feasibility of training and integrating a ML 258 

model of non-invasive surface ECG data into the pipeline of a commercially available 259 

software (ADAS 3D LV) that allows to correlate ECG and anatomy by characterizing 260 

the myocardial scar from LGE-CMR studies. The clinical relevance comes from the fact 261 

that this pipeline may allow to standardize the invasive treatment (ablation) in patients 262 

that have suffered from life-threating VTs. 263 

• This study proves additional advantages of the use of ML when interpreting ECG 264 

tracings. When compared to a reference visual model, based on operator’s expertise, (3) 265 

it shows a similar accuracy in terms of best predicted SgO, but it can further identify 266 

more SgO by suggesting up to 3 adjacent –and potential– SgO. 267 

• There was a median of 0.83 (0.8 – 1) CMR-derived BZC entrances per scarred segment. 268 

These are considered ablation targets for invasive treatment of scar-related reentrant 269 

VTs. (8,13) Thus, the automatic identification of the VT-SgO using the proposed usable 270 

software-based pipeline almost equals the identification of the putative BZC being the 271 

critical isthmus of the reentry VT circuit. 272 

With regards to the first and second points, the developed ML model has many advantages for 273 

the prediction of the VT-SgO location. On the first hand, it is flexible, facilitating the 274 

identification of non-linear relationships between the input data. Secondly, a probabilistic 275 

formulation is available, allowing for stratifying the prediction by returning a hierarchy of 276 

probabilities of adherence to a specific AHA segment instead of a single value. Reentrant VTs 277 

exit sites, which correspond to BZC entrances identifiable after post-processing a LGE-CMR, 278 

are not always found ‘at the center’ of a given AHA segment. On the contrary, BZC entrances 279 

can be found at any point of the LV anatomy, and, therefore, it is not uncommon to find them 280 
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close to the hypothetical boundary between 2 segments, or even more than 2. These localization 281 

differences represent mm or few cm of distance, but they can determine subtle changes in the 282 

morphological characteristics of the ECG. These distinctions may be incorporated when 283 

training a ML model, but they seem difficult to be merged into visual algorithms reliant on 284 

operator’s knowledge. 285 

The identification of the VT-SgO seems useful, since at this anatomical level it is possible to 286 

find at least one BZC entrance. BZC are, as already defined, corridors of heterogeneous (viable) 287 

myocardial tissue surrounded by dense scar and connecting two areas of healthy myocardium. 288 

It is an anatomical concept, based on what can be revealed when performing an LGE-CMR. 289 

This imaging technique is recognized as the gold standard to determine the location and extent 290 

of myocardial scar. (14) There is proven correlation between the anatomical findings of the 291 

CMR and functional electrophysiology: the CMR-defined scar has a good correlation with low-292 

voltage areas in the electroanatomical maps (EAM), (15,16) and the presence of BZC is related 293 

to the presence of slow conducting channels within the scar. (15,17) Moreover, the size and 294 

heterogeneity of the post-MI scar, as evaluated with CMR, are variables that have been 295 

associated with VT inducibility, (18,19) arrhythmia events, and even mortality. (20–22)  296 

Ventricular tachycardia (VT) substrate ablation is an effective treatment for patients that suffer 297 

from recurrent episodes of scar-dependent VTs. (23,24) However, different substrate-guided 298 

approaches have been proposed; targeting conducting channels based on timing of delayed 299 

electrogram components during sinus rhythm (scar dechanneling) has proven to be an effective 300 

approach. (6,13) Recently, CMR-guided VT ablation based on scar dechanneling has proven to 301 

halve the time required for the procedure, significantly reducing the need of fluoroscopy and 302 

radiofrequency delivery, and being associated with a a higher ventricular arrhythmia-free 303 

survival. (8) 304 
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All the aforementioned, the ability to automatically localize the BZC (and its entrance) from 305 

ECG and CMR data would permit to standardize ablation procedures, to shorten the time from 306 

the insertion of the catheter until abolition of the documented VT and, likely, to improve safety 307 

and reliability of these procedures. 308 

 309 

Study limitations 310 

An important limitation is the necessity of the actual pipeline to rely on manual identification 311 

of the QRS segment. The existing tools for delineation are often faced with poor performance 312 

on complex rhythms such as VT. The development of all-purpose, robust tools for wave 313 

delineation can fully automatize the developed pipeline. Finally, classical ML approaches are 314 

overtly reliant on the extraction of quality features for describing the data to be analyzed. More 315 

detailed spectral-, signal- or wavelet-based features could be applied for more adequate data 316 

representation. 317 

 318 

Future directions 319 

• The ability to import ECG tracings not only from specific electrophysiology recording 320 

systems in the cath lab, but also from ambulatory digital ECG recorders, or even paper 321 

(analogical) tracings would be a milestone on the path towards clinical applicability. 322 

Patients suffering from life-threating VTs would have an ECG from the emergency 323 

department; this ECG could be automatically imported into ADAS 3D LV, and 324 

analyzed together with the LGE-CMR to plan the invasive treatment and select the best 325 

ablation target, all in a full automated way. 326 

• Other ML approaches, such as directly using raw ECG data with deep learning 327 

algorithms, could also be explored. Deep learning typically yields an increased 328 
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performance, although these models require larger amounts of annotated data, besides 329 

producing black-box models that are difficult to interpret. (25) 330 

• Some methodologies based on deep learning have shown promising results for 331 

automatic ECG delineation. Although the database employed for developing models for 332 

automatic ECG delineation do not perform adequately on complex morphologies such 333 

as sustained ventricular tachycardias, recent developments in the machine learning field 334 

could allow extending currently developed models to adapt to VT morphologies, 335 

enabling fully automated SgO identification. 336 

 337 

Conclusions 338 

The identification of scar-related VT-SgO and the putative BZC responsible for the reentry VT 339 

circuit can be fully automated by combining the surface ECG and the LGE-CMR imaging data 340 

into a machine learning (ML) algorithm integrated into a commercially available post-341 

processing software. This could allow for standardization of ablation (i.e. treatment) 342 

interventions for these life-threatening arrhythmias.  343 
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TABLES 431 

Table 1. Baseline characteristics of the ML training and validation populations. See text 432 

for details. 433 

 
Training population 

n = 104 

Validation 

population 

n = 15 

p 

Age, y 68 ± 9 65 ± 12 0.25 

Male, n (%) 85 (82) 13 (89) 0.50 

HT, n (%) 74 (71) 11 (75) 0.75 

DLP, n (%) 52 (50) 9 (63) 0.35 

DM, n (%) 28 (27) 4 (27) 1.0 

LVEF, % 37 ± 15 39 ± 18 0.64 

LVEDD, mm 63 ± 8 61 ± 12 0.40 

LVESD, mm 45 ± 13 43 ± 11 0.57 

ICM, n (%) 85 (82) 13 (89) 0.50 

Mean VT cycle length 323 ± 135 341 ± 143 0.63 

ICD carriers before ablation [n 

(%)] 

94 (90) 13 (89) 0.90 

NYHA 

• I, n (%) 

• II, n (%) 

• III, n (%) 

• IV, n (%) 

 

29 (28) 

60 (58) 

15 (14) 

0 

 

5 (34) 

8 (54) 

2 (14) 

0 

 

 

0.77 

Approach 

• Endo, n (%) 

• Endo/Epi, n (%) 

 

76 (73) 

28 (27) 

 

11 (75) 

4 (25) 

 

0.87 

Indication 

• Incessant VT, n (%) 

• Arrhythmic storm, n (%) 

 

7 (7) 

10 (10) 

 

2 (13) 

1 (7) 

 

0.42 

CMR: cardiac magnetic resonance; DLP: dyslipidemia; DM: diabetes mellitus; HT: 434 

hypertension; ICM: ischemic cardiomyopathy; LVEF: left ventricle ejection fraction; 435 

LVEDD: left ventricle end-diastolic diameter; LVESD: left ventricle end-systolic 436 

diameter; NYHA: New York Heart Association functional class; VT: ventricular 437 

tachycardia. 438 

  439 
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Table 2. Ablation results in the validation population (n = 15).  440 

Procedure time (min) 103 ± 64 

RF time (min) 12 ± 10 

RF applications (n) 32 ± 23 

Fluoroscopy time (min) 9 ± 5 

Residual VT after substrate ablation, n (%) 5 (18) 

Induced VT morphologies 1 (1 – 1) 

Complications (%) 0 

Final procedure success (n, %) 

• Total 

• Partial 

• No 

 

13 (87) 

2 (13) 

0 (0) 

 RF: radiofrequency; VT: ventricular tachycardia.   441 
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FIGURES 442 

Figure 1. Employed machine learning (ML) pipeline. The first step consists in data 443 

annotation, where the onset and offset were annotated for the ECGs in the study 444 

population. The second step consists in data preprocessing, where the QRS’ are isolated, 445 

normalized, divided into training/testing sets for ML model tuning, and augmented. The 446 

third step consists in the extraction of features for robust description of the input data; 447 

signal-based, wavelet-based and spectral-based features were extracted for all recordings 448 

in the train and test sets. The fourth step consists in model training from the extracted 449 

features in the training set. Finally, the fifth step evaluates the performance of the model 450 

in the features of the held-out test set. 451 

  452 
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Figure 2. Example of application of the visual reference algorithm for identification of 453 

VT-SgO. Patient with ischemic cardiomyopathy and anteroapical transmural scar. The 454 

scar, visualized after CMR postprocessing using ADAS 3D LV (left panel), is 455 

characterized as core (dense fibrosis) in red, border zone (intermediate fibrosis, 456 

heterogeneous tissue) in green, and healthy myocardium in pink. The red circle marks 457 

the site of the clinical VT exit, which corresponds to a BZC entrance (white line). The 458 

12-lead ECG of the VT is shown in the right panel. Regarding the VT morphology, the 459 

following considerations were made: Maximum absolute amplitude in ECG limbs: (+) 460 

III. Adjacent leads to (+) III: (+) aVF. Segment group considered: 1 / 7 / 13. Polarity in 461 

precordial leads: (-) V3 / (-) V4. Final Segment = 13 (apical anterior). 462 

  463 



25 

Figure 3. Example of the ADAS 3D LV interface showing a VT-ECG in a patient with 464 

an anteroseptal myocardial infarction. The manually selected start and end times of the 465 

QRS morphology are highlighted in the red box. After selecting the QRS, the SVM 466 

classifier is executed to calculate the VT-SgO. This calculates the probability of each 467 

AHA segment of being the VT-SgO. The software then displays the most probable 468 

segment (in this case, segment 2, or basal anteroseptal) and then the user can press the 469 

button ‘Visualize Segment in 3D LV’ which launches the screen of figure 4. 470 

  471 
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Figure 4. Predicted VT-SgO (AHA segment 2, or basal anteroseptal) in a patient with an 472 

anteroseptal myocardial infarction. The scar, visualized after CMR postprocessing using 473 

ADAS 3D LV, is characterized as core (dense fibrosis) in red, border zone (intermediate 474 

fibrosis, heterogeneous tissue) in yellow, and healthy myocardium in blue. The red lines 475 

surrounded by white represent the heterogeneous tissue corridors (border zone channels) 476 

embedded within the scar and calculated automatically. The AHA segment 2 is 477 

highlighted in yellow and indicates the exit of the putative responsible channel for the 478 

reentry circuit causing the VT. Ablation treatment could be then first directed to this area. 479 

 480 

 481 

  482 
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Figure 5. Predicted VT-SgO (AHA segment 9, or mid inferoseptal) in a patient with an 483 

inferior-inferoseptal myocardial infarction. The VT morphology was analyzed with the 484 

ADAS 3D LV software, which detected segment 9 as the most probable VT-SgO 485 

(segment 10 the second most probable). Using the same software, post-processing of the 486 

LGE-CMR to characterize the myocardial scar permitted to detect a BZC entrance just 487 

located in segment 9 (adjacent to segment 10). This BZC was considered responsible for 488 

the VT reentry circuit; its entrance acting as the ‘exit site’ during VT. Radiofrequency 489 

ablation of this BZC entrance rendered the VT non-inducible anymore.  490 

 491 

 492 

  493 
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Figure 6. Prediction of the VT-SgO using the reference algorithm (visual) versus a 494 

complete automatic pipeline (ADAS 3D LV software with an integrated ML model to 495 

predict the VT-SgO plus scar characterization from LGE-CMR data). Patient with an 496 

inferolateral myocardial infarction referred for VT ablation. The VT morphology is 497 

shown (black panel). The reference algorithm (left panel) allows to predict segment 11 498 

as the VT-SgO, but it requires a high level of knowledge in recognizing ECG tracings. 499 

The proposed pipeline using the new embedded tools in ADAS 3D LV software allows 500 

to predict the same SgO in an automatic way, besides recognizing the BZC responsible 501 

for the VT circuit and its entrance at the target SgO. 502 

 503 
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