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ABSTRACT 

 

We have developed a laser confocal microscope that is able to project on a sample programmable excitation patterns and 

filter and compose the final image entirely through digitally controlled solid-state devices. This fully digital laser 

microscope is orders of magnitude more flexible than current commercial microscopes and is naturally suited to integrate 

artificial neural networks at different stages of its imaging process. The envisaged "learning" microscope will be able to 

more easily adapt to the complex and changing needs of its users and show enhanced performance. Through ATTRACT-

Phase I we have been able to demonstrate super-resolution imaging capacities beyond the diffraction limit of this ultra-

flexible, totally digital, user-trainable microscopy concept.  
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1. INTRODUCTION 

• Laser confocal microscopes are the workhorse 

for sample visualization in all fields of cell 

biology and biomedical research as they allow 

targeted observation of cellular components with 

high contrast and resolution. Today, most 

universities and scientific institutions worldwide 

own laser confocal microscopes, jointly 

representing a huge market opportunity.  

However, despite the amazing technology feat 

that these microscopes represent, the scanning 

and filtering devices on which they rely remain 

disappointedly low-tech as these consist of 

motorized mirrors or spinning disks as well as 

physical apertures of fixed, predesigned sizes 

through which light needs to pass. This outdated 

electro-mechanical core of modern microscopes 

unnecessarily limits their flexibility and makes 

difficult the incorporation of technology 

developments from other fields, such as artificial 

intelligence (AI). 

• During the last five years we have been 

developing the acousto-optic and electronic 

technology necessary to completely revamp the 

technological basis of laser microscopes. Our 

microscope is designed around two concepts: 

a) a programmable laser illuminator based on 

acousto-optic technology. An ultra-fast 

acousto-optic deflector is driven by a 

computer-controlled waveform generator that 

holographically modulates the laser wavefronts 

thus creating programmable excitation 

patterns.   

b) A custom camera with programmable pixel 

row readout and high-speed image processing 

electronics. This subsystem captures the 

emitted light from the sample, algorithmically 

filters out-of-focus photons and renders the 

final, user-viewable image in real time.  

 

With these two key ideas we managed to 

completely digitize the operation of a laser 

confocal microscope. As a result, cross-

fertilization with cutting-edge digital 

technologies, which was challenging before, now 

becomes all too natural. Our vision involves the 

incorporation of artificial neural networks 

(ANNs) that control the different stages of the 

imaging pipeline to create a "learning" optical 

instrument capable of tuning and improving its 

performance through interaction with the user. 

Such a fully digital, active-interrogation, sample-

adapted, user-trainable microscope has simply 

no precedents in the market.  

• Phase-I offered us a platform for a proof-of-

concept demonstration of the capabilities of our 

system for merging with AI technologies. 

Toward that end, ANNs in charge of the final 

image integration were designed to obtain super-

resolution information beyond the diffraction 

limit. Results obtained are commercially 

valuable (resolution below 100 nm at video 

rates) so a new patent application is planned.  
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2. STATE OF THE ART 

As a proof of concept of the enhanced capabilities of 

our digital electro-optic laser microscope merged with 

AI techniques we focused on obtaining super-

resolution. For many years, optical microscopy has been 

troubled by an apparently insurmountable obstacle: the 

diffraction limit imposed by the wave nature of light, 

which restricts its capacity to resolve sample details 

below 200 nm. It is then of little surprise that the 

knocking out of the diffraction resolution barrier by 

new techniques such as Stimulated Emission Depletion 

(STED) and Stochastic Optical Reconstruction 

Microscopy (PALM-STORM) has so quickly deserved 

worldwide recognition and a Nobel Prize (Chemistry 

2014). Unfortunately, the stunningly resolved pictures 

produced by these instruments (down to a few tens of 

nm) come at a hefty price: a sophisticated and 

expensive technology or a very slow image acquisition. 

Therefore, the microscopy market eagerly seeks super-

resolution alternatives with more balanced trade-offs 

[1].  

3. BREAKTHROUGH CHARACTER OF 

THE PROJECT 

Artificial neural networks have been previously 

applied to advanced microscopy, for example to 

accelerate the reconstruction of super-resolution 

information out of PALM-STORM images, as recently 

shown by W. Ouyang et al. [2] or to guess high-

resolution details in low-resolution images based on 

prior experience, such as in Y. Rivenson et al.  [3]. 

Although very probably these type of ANN applications 

will find its niche in future commercial products it 

should be noted that they work by analysing images 

produced through standard microscopy techniques a 

posteriori, they do not have any bearing on the image 

acquisition itself, so they more properly compete 

against image processing and reconstruction 

applications (such as deconvolution software, for 

example). An active-interrogation, capable of producing 

arbitrary fluorescence excitation patterns, ultrafast 

optical microscope controlled by an artificial neural 

network designed and trained to freely probe, extract 

and compose super-resolution images has simply no 

precedents, as we are the first to have devised or 

developed the unique combination of technologies that 

makes this possible.  

1. PROJECT RESULTS 

The microscope developed (Fig. 1) can generate 

through a smart illumination and a scanning protocol a 

series of different images from the same sample. The 

ability to adapt lighting geometry, density and 

wavelengths is what allows us to define our proposal as 

programmable, in the sense of configurable, being able 

to adopt different identities of other types of 

microscopy and explore new configurations. 

Therefore, each field of view becomes a stack of images 

that must be combined to reconstruct the final image. 

The way to combine the different partial views that are 

captured in each image, where the light has been 

strategically placed, gives a new dimension of 

improvement. From a typical confocal view (adding all 

the light) to the proposal developed in this project is 

based on Deep Learning, which strongly improves 

resolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Opto-mechanical prototype attached to a Nikon 

Eclipse TE-2000 epifluorescent microscope. 

Of the different strategies used in DL, we have opted 

for the generation of simulated data. This strategy 

simplifies the generation of huge amounts of data and 

allows to obtain low (at diffraction limit) and high 

resolution (beyond diffraction limit) image pairs of the 

same field of view. We have developed a computational 

tool that mimics the physical principles in the real 

device: emission, illumination patterns, interference, 

cross talk, attenuations, Point Spread Funcion. It has 

been programmed using the same computation modules 

used in DL, which in the future could be inserted in the 

learning pipeline, directly combining and comparing 

real and simulated results.  

In this initial stage of the proposal we have chosen to 

simulate large datasets composed of random spatially 

distributed nano-beads and straight lines. Followed by 

the addition of noise and background light, making our 

dataset as close as possible to the experimental 

conditions. Additionally, the ground truth to train the 

ANN (convolutional) is a blurred version of the sample 

used to simulate the microscopy images. Using perfect 

data as ground truth prevents the neural network from 
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generalizing and often finds solutions with good 

resolution but failing on localization or missing 

elements present in the sample. The blurring procedure 

allows to control the resolution achieved and avoids the 

above-mentioned problems. 

To evaluate the super-resolution capabilities of our 

trained neural network, we used different synthetic 

resolution tests, see Fig. 2. The results show an 

isotropic lateral resolution improvement of more than 2-

fold. The neural network can resolve structures of 80 

nm with good localization, although with a slight 

decrease in the intensity, nevertheless this good 

localization is lost at 60 nm. The experiments have been 

performed simulating data coming from a 60× NA 1.2 

objective using a 532 nm excitation laser. For this case 

the Rayleigh resolution limit is 270 nm. 

 

 

Fig. 2. (top) Comparison between confocal and super-

resolution images. The yellow dotted ring denotes the physical 

resolution limit. (bottom) Average line profile (256 lines) 

from the top left sample.  

Finally, to test the robustness of the network, it has been 

applied to several more realistic cases such as a 

simulated biological elements and finally in 

experimental samples. As seen in Fig 3a and 3b, 

simulated filamentous images (mimicking cytoskeletal 

structures) are also well reconstructed. The 

experimental samples are composed of randomly 

distributed sub-diffraction limit fluorescent beads 

deposited on a cover slip. Fig. 3c and 3d show low and 

medium density real images to test the performance in a 

real scenario. At low densities the scheme achieves 

better and remarkable results while in saturated areas in 

high density images some artifacts appear (grid 

structure). In the future, as the hardware part progresses 

in the prototype, the network training will be refined 

and improved, incorporating both synthetic and 

experimental training sets. 

The results in both synthetic and experimental samples 

are surprisingly good. Network can generalize very 

well, resolving much more complex structures, 

composed of lines, curves, constant zones and other 

arbitrary forms. Currently, the time required to compose 

a field using DL, assuming parallelism, give us 40 

frames per second (fps), opening the possibilities of live 

cell imaging or real-time volumetric reconstructions. 

This time corresponds to the calculation time to process 

the data, but our prototype is able to acquire images up 

to 120 fps. This means that, if the image processing is 

done offline, biological processes can be observed at 

higher speeds. 

 

 

Fig. 3. Epifluorescence (left) and super-resolution (right) 

images. a) and b) Synthetic filaments, mimicking the 

cytoskeletal network of a cell [2]. c) and d) randomly 

distributed sub-diffraction limit fluorescent beads. 

2. FUTURE PROJECT VISION 

ATTRACT-Phase I has permitted us to show how our 

microscopy platform can gain commercially valuable 

new abilities (i.e. super-resolution in a little exploited 

performance niche) in a non-algorithm, non-

predesigned way. However, the limited scope of phase I 

made us restrict the proof-of-concept to the easiest part 

within the imaging pipeline where an ANN can be 

embedded, that of the final image synthesis. The full 

vision of an advanced laser microscope that is totally 

managed by an user-trainable coordinated set of ANNs, 

which are in charge of both the sample exploration as 
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well as the information processing and image rendering 

steps, can only be attained in a more ambitious Phase II, 

with additional resources.  

2.1. Technology Scaling 

Following standard practice, our development plan 

towards a minimum viable product (MVP) will be 

arranged in four phases. Current status within the 

Technology Readiness Level (TRL) ladder is TRL3. 

1. Alpha prototype (TRL1 to 4): Proof of concept. 

Mostly off-the-shelf electronics; catalogue optics 

and prototyping opto-mechanics; software based on 

Matlab/Python; lab bench layout. Full ANN control 

of imaging pipeline & training devised. 

2. Beta prototype (TRL5 to 6): Custom opto-

mechanics; custom radiofrequency electronics; 

user-friendly basic software; deployable at core 

facility for feedback. Full ANN control of imaging 

pipeline implemented and pre-trained. 

3. Gamma prototype (TRL7): Industrial design 

including external look & feel; fulfilment of CE 

marking and safety regulations; fabrication, 

alignment and installation documentation; full 

custom electronics; full user software 

4. MVP (TRL8 to 9): Market ready. Final 

manufacturing materials, procedures and suppliers; 

Independent tests; technical/safety labelling; user 

manuals; CE certification for electromagnetic 

compatibility and laser safety. 

2.2. Project Synergies and Outreach 

In Phase II, according to the technology scaling in the 

previous section, we will need to liaise with: 

• Manufacturers and developers of our core 

technology devices for further customization: e.g. 

AA Optoelectronic, France, Optronis, Germany.  

• Electronic design partners to integrate current 

heterogeneous off-the-shelf electronic boards. 

• Technology partners such as R&D organizations 

with expertise in random addressable active pixel 

image sensors, such as IMEC (Belgium) or CEA-

Leti (France), and with expertise in application of 

ANNs to imaging problems, such as ElementAI 

(Canada) with whom we have a preliminary 

agreement. 

• Advanced light microscopy core facilities for 

application development and testing, such as those 

in CNIO and CRG, Spain or EMBL Germany. 

 

We have no plans to converge with other ATTRACT 

projects, as their originality makes this goal difficult 

without endangering each other's vision. Public 

dissemination in our field has proven very effective 

through Twitter, where many opinion leaders in 

microscopy are active. Regarding the mainstream 

public, the traditional media is still both effective and 

interested in the development of advanced technologies, 

especially those related to Life Sciences [4].   

 

2.3. Technology application and demonstration 

cases 

A phase-II project will demonstrate an application in 

High-Content Screening (HCS). HCS is a microscopy-

based phenotyping technique used in cell assays with a 

main application in drug discovery.  The variety and 

complexity of HCS assays impose considerable 

demands on instrument manufacturers. For example, 

very high frame rates are needed to monitor calcium 

dynamics in cardiotoxicity assays. On the contrary, for 

analyzing fine structural elements, such as neurite 

outgrowth when testing neuroactive compounds, 

resolution is king. These are mutually exclusive goals 

that current technology cannot meet simultaneously. In 

our instrument the illumination patterns and matching 

confocal apertures are synthetized by digital means so 

that the main characteristics of the microscope can be 

tuned according to user's demands, potentially solving 

the issue. Screening clinically relevant drugs against 

patient derived cell lines has recently risen as a very 

promising alternative for personalized treatments in 

precision oncology [5]. Personalized or precision 

medicine is one the hot-topics related to the health 

societal challenges of the future and is one of the top 

R&D priorities of the European Commission. Finally, 

as we mention in Sec. 2.2 we aim at partnering in Phase 

II with several research infrastructure organizations 

such as CE-Leti or the EMBL. 

2.4. Technology commercialization 

The technology assets can be transferred either by 

licensing the patents to a microscopy company or by 

launching a start-up. Regarding the first possibility, the 

points in favour are:  

• The companies that dominate the microscopy 

market, the "big four": Nikon, Olympus, Zeiss and 

Leica, create "market-pull" type of innovations, 

which represent incremental enhancements over the 

state-of-the-art. Radically new technologies almost 

always come from research centres and universities, 

so these companies are used to license and develop 

technology that comes off site.  

• We have a close contact with a C-suite executive in 

a national branch of one of the "big four", who has 

offered us help in getting the technology evaluated 

at the right decision level within the company.  

Regarding launching a start-up, plus points are: 

• The team has experience in starting up technology-

based companies. Mario Montes is co-founder and 

major shareholder of Impetux Optics, a UB spinoff 

that markets laser-trapping instrumentation. Felipe 

Lumbreras, is a serial entrepreneur, having co-

founded five spinoffs at the CVC-UAB. 
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• Starting a company captures considerably more 

value than merely licensing the technology. A 

company is an appropriate vehicle to encapsulate 

and leverage the know-how developed by the R&D 

team and an efficient way to finally transfer it at a 

larger profit.  

Considering these pros and cons, and although we may 

still consider a license by a major corporation, we are 

working toward the incorporation of a company. As the 

technology is still in development in key areas, the 

contacts outside the university environment have been 

limited on purpose. However, an initial confidential 

inquiry has been launched with a microscope 

manufacturer in order to determine their potential 

interest in licensing our IP.  

2.5. Envisioned risks 

The following tables contain the risk probability matrix 

and mitigation plan: 

Tab. 1. a) Table with the identification and classification of 

risks. It also indicates the area they might impact. b) 

Mitigation strategy for the identified risks. c) Probability 

matrix and risk classification. 

Risk	ID Risk	name Pos/Neg Risk	type

R1 Limited color channels with a single device/need for more complexity Negative Technology

R2 Underperforming image sensor Negative Technology

R3 Only partial implementation of ANN approach is feasible Negative Technology

R4 Lower acquisition/processing speed than expected Negative Technology

R5 Technology useful outside the confocal field (e.g. super-resolution) Positive Technology

R6 Less than desired first investment secured Negative Financial

R7 Less than desired second investment, not finding an industrial partner Negative Financial

R8 Not reaching mainstream markets/niche technology Negative Financial

R9 High manufacturing costs Negative Business model

R10 Competing optical technologies appearing in the market Negative Business model

R11 Attraction of managerial/technical talent insufficient Negative Business model

R12 Other business models more appropriate Positive Business model

a) 

Response	plan

R1. Mitigate. Change the prototype desing, include two optical paths with 2 colors each.

R2.Mitigate adopting either alternatives already identified or fully custom device at a higher cost

R3. Accept it, if performance better than algorithmics.

R4. Mitigate. Enhance processing power at a higher cost.

R5. Exploit. Collaborate with experts/license IP and incorporate technology into own commercial product.

R6. Mitigate. Reduce specs for prototype and search for alternative funds 

R7. Avoid. Find alternative funding. Find partners or VC abroad even as far as the US

R8. Mitigate. Bootstrap with revenues. Consider change of business model to Open Hardware

R9. Design and produce part of the electronics in-house. Negotiate with suppliers discounts based on volume.

R10. Accept. Deal with the competence, compete in value rather than in price.

R11. Avoid. Partner with venture builder if necessary.

R12. Exploit. Alternative business models: "Hardware as a Service" and "Open Hardware" approaches.

b) 

 

c) 

2.6. Liaison with Student Teams and Socio-

Economic Study 

In project SCORED we are acutely aware, not only of 

the societal needs for advance training of MSc students 

in entrepreneurial matters, but also of the capacity of 

these students to contribute with fresh and valuable 

ideas to R+D efforts. Prof. Mario Montes is instructor 

in the entrepreneurial course "Patents and Business in 

Photonics", belonging to the Barcelona Master in 

Photonics, in which these activities can find synergies 

within the current syllabus. Student activities regarding 

our possible open hardware business model as well as 

those related to section 5.3, applications with societal 

impact, could be used as the topic for exercises and the 

results actually be incorporated into the project.  

Regarding the expert-driven socio-economic study of 

the ATTRACT initiative we are committed to 

participate in any activity that would foster ATTRACT 

goals. All data generated by our project regarding 

impact, links established with project's stakeholders, 

additional funding raised, commercial, scientific and 

academic outcomes, etc. we are willing to share with 

ATTRACT officials. We will also be happy to 

contribute with suggestions, initiatives and more active 

involvement. 
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